
Laplacian Kernel Splating for Eficient Depth-of-field and Motion Blur
Synthesis or Reconstruction

THOMAS LEIMKÜHLER,MPI Informatik, Saarland Informatics Campus, Germany

HANS-PETER SEIDEL,MPI Informatik, Saarland Informatics Campus, Germany

TOBIAS RITSCHEL, University College London, United Kingdom

Δ ∫

Δ

Δ

Input pixels Dense PSF Sparse PSF Laplacian domain Result

a) b) c) d)100 % 9,3 %

Fig. 1. Computing motion blur and depth-of-field by applying a point spread function (PSF) to every pixel (a) is computationally costly. We suggest splating a

pre-computed sparse approximation of the Laplacian of a PSF (b) to the Laplacian of an image (c) that under integration provides the same result (d). Note

the circular bokeh combined with motion blur (1024×1024 pixels, 2 layers, 190ms, Nvidia GTX 980Ti at .97 SSIM to a path-traced reference).

Simulating combinations of depth-of-ield and motion blur is an important

factor to cinematic quality in synthetic images but can take long to compute.

Splatting the point-spread function (PSF) of every pixel is general and pro-

vides high quality, but requires prohibitive compute time. We accelerate this

in two steps: In a pre-process we optimize for sparse representations of the

Laplacian of all possible PSFs that we call spreadlets. At runtime, spreadlets

can be splat eiciently to the Laplacian of an image. Integrating this image

produces the inal result. Our approach scales faithfully to strong motion and

large out-of-focus areas and compares favorably in speed and quality with

of-line and interactive approaches. It is applicable to both synthesizing from

pinhole as well as reconstructing from stochastic images, with or without

layering.

CCS Concepts: · Computing methodologies → Rasterization; Image-

based rendering; Massively parallel algorithms;

Additional KeyWords and Phrases: Distribution rendering; Gradient Domain;

Depth-of-ield; Motion blur.

ACM Reference Format:

Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel. 2018. Laplacian

Kernel Splatting for Eicient Depth-of-ield and Motion Blur Synthesis or

Reconstruction. ACM Trans. Graph. 37, 4, Article 55 (August 2018), 11 pages.

https://doi.org/10.1145/3197517.3201379

Authors’ addresses: Thomas Leimkühler, MPI Informatik, Saarland Informatics Campus,
Campus E1.4, Saarbrücken, 66123, Germany, tleimkueh@mpi-inf.mpg.de; Hans-Peter
Seidel, MPI Informatik, Saarland Informatics Campus, Saarbrücken, Germany; Tobias
Ritschel, University College London, London, United Kingdom.

© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The deinitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3197517.3201379.

1 INTRODUCTION

Depth-of-ield (DoF) and motion blur (MB) are a key ingredient

to the look and feel of most cinematic-quality feature ilms [Goy

2013]. Reproducing them in synthesized imagery is a typical and

well-understood part of most photo-realistic rendering systems.

When it comes to eicient, interactive or even real-time render-

ing, current solutions to DoF and MB typically make several key

assumptions that result in computational eiciency but come at the

cost of reduced quality. A typical example is to assume DoF and MB

to be independent, to be able to approximate the space-time lens

transport by a convolution [Potmesil and Chakravarty 1981] and

often to approximate their reconstruction using Gaussian iltering

[Belcour et al. 2013; Egan et al. 2009; Munkberg et al. 2014; Soler

et al. 2009; Vaidyanathan et al. 2015]. In this work, we devise a

method to synthesize or reconstruct cinematic quality motion blur

and depth-of-ield, while retaining most of the eiciency of typical

approximations.

Input to our method are pixels (Fig. 1, a), which we see as light-

ield samples, labeled with additional geometric and dynamic in-

formation. We can work on pixels coming both from simple and

layered images, as well as from a pinhole camera (synthesis), or sto-

chastic path-tracing/rasterization (reconstruction). The point spread

function (PSF) of each input pixel can afect a very large image area.

Computing this contribution from each input point to a high num-

ber of output pixels is both the key to high quality, but regrettably

also the reason for slow execution speed (Fig. 1, b).

Our key idea is to perform the required splatting operations in

the Laplacian domain (Fig. 1, c). While the spatial extent afected

by the typical PSF can be very large, it remains compressible, i. e.,

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201379
https://doi.org/10.1145/3197517.3201379

55:2 • Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel

sparse, in the Laplacian domain (Fig. 1, ∆ in b). Therefore, instead of

splatting dense contribution onto an image, we splat sparse points

we call spreadlets onto the Laplacian of the image, which is inally

transformed into the primal domain (Fig. 1, d) using a fast method

[Farbman et al. 2011]. We operate on diferent models of spaces of

all PSFs, depending on depth, motion and image position. A pre-

process jointly optimizes for a sparse representation and a small

reconstruction error of all PSFs in a particular space.

2 PREVIOUS WORK

Computer graphics has a long history in modeling the imperfections

of physical lens systems and ilm exposure to the end of providing

the desired cinematic idelity of real imagery.

A general solution to account for MB and DoF is Monte-Carlo

(MC) ray-tracing [Cook et al. 1984; Pharr et al. 2016] in combination

with a proper camera model [Kolb et al. 1995]. While this is accurate,

it is not yet feasible for the interactive applications we target.

Alternatively, micropolygon-based solutions [Cook et al. 1987]

allow for distribution efects but have not become mainstream for

interactive graphics. Stochastic rasterization [Akenine-Möller et al.

2007; Fatahalian et al. 2009] brings distribution efects close to inter-

active performance, but still has diiculties with large motion and

the remaining noise.

An improvement in speed, mainly due to re-using shading, is

based on aggregating multiple views [Haeberli and Akeley 1990;

Leimkühler et al. 2017; Yu et al. 2010]. These lack subtle efects

found in MC, such as the impact of view-dependent shading on DoF

and MB. The results are still not interactive for large MB and DoF

or combinations thereof.

For increased eiciency, image-based methods [Potmesil and

Chakravarty 1981] have been popular for DoF and MB and found

commercial use in practical applications such as games [Göransson

and Karlsson 2007]. Using image-space ilters has been proposed in

many diferent forms [McGuire et al. 2012; Rosado 2007]. A typical

DoF solution is to use one [Kraus and Strengert 2007], or multiple

MIP fetches [Lee et al. 2008] or learned kernels in a neural network

[Nalbach et al. 2017].While very fast, thesemethods use convolution

and are only correct for translation-invariant PSFs.

Ray-marching (layered) depth images [Lee et al. 2009, 2010] is

another method to produce high-quality DoF at high speed. They

support complex DoF, producing a cinematic efect. However, they

still result in MC noise and we are not aware of extensions to MB.

Very complex DoF in a lens system is typically related to lens

lares that has been simulated using dedicated approaches [Hullin

et al. 2011]. Here, the PSF is colorful and varies drastically across

the sensor. Again, it is not clear how to combine such specialized

solutions with MB as they are already far from interactive.

The reconstruction of noise-free images from stochastic images

has received substantial attention [Kontkanen et al. 2006; Lehti-

nen et al. 2011; McCool 1999; Sen and Darabi 2012]. In particular

for DoF and MB, Fourier theory [Belcour et al. 2013; Egan et al.

2009; Munkberg et al. 2014; Soler et al. 2009] is of great importance.

Munkberg and colleagues [2014] explicitly model the combination

of MB and DoF. Such approaches account for the efect of DoF and

MB as a ilter that reduces the bandwidth and therefore allows blur-

ring the image, eventually also reducing MC noise. We refrain from

iltering the image in a gathering fashion and instead scatter a PSF

for every sample. Conceptually, we extrapolate the full space-time

contribution from a single sample.

Another design dimension is to either work with layers [Kraus

and Strengert 2007; Lee et al. 2009, 2010] or without [Belcour et al.

2013; Egan et al. 2009; Potmesil and Chakravarty 1981; Soler et al.

2009]. Our approach addresses all combinations of layered/non-

layered and reconstruction/synthesis as the input is merely a set of

labeled pixels.

Heckbert [1986] has shown how iltering can be done efectively

using diferentials and Simard et al. [1999] have extended this idea

to eicient, spatially-varying convolution. Other approaches use

uniform iltering of basis functions to approximate spatially-varying

iltering [Fournier and Fiume 1988]. Such linear bases do not work

well when reproducing the detailed and discontinuous functions

of a typical PSF, including circles, lines, capsules, etc. At any rate,

convolving the image with any gathering ilter is only a crude

approximation to the efect of applying a scattering PSF.

In summary, we see that many diferent attempts to model DoF

and MB exist, that some approaches seek to approximate the efect

of spatially-varying convolutions, but regrettably no approach has

yet managed to provide cinematic idelity at interactive rates. We

suggest, for the irst time, using the diferential domain to overcome

this limitation. The gradient domain has previously been used for

image processing [Bhat et al. 2010; Pérez et al. 2003], and recently

received new interest in contexts such as image compression [Galić

et al. 2008], vector graphics [Orzan et al. 2013], image-based render-

ing [Kopf et al. 2013], texture representation [Sun et al. 2012], and

realistic image synthesis [Lehtinen et al. 2013], but not yet for MB

or DoF and not in an interactive setting.

3 OVERVIEW

Our approach comprises of two steps: a pre-calculation (Fig. 2, a)

followed by a runtime step (Fig. 2 bśe).

Pre-computation. The pre-computation (Fig. 2, b and Sec. 5) sam-

ples the space of all PSFs according to a speciic PSF model. Each PSF

is converted into the Laplacian domain where it is approximated by

a sparse set of optimized points. This łspreadlet” representation is

stored on disk.

Input. At runtime, input to our method are pixels labeled with

shading and lens-time-etc. coordinates that we interpret as temporal

light ield samples. Such a sample captures the radiance emitted

from a certain world position at a certain point in time through a

certain lens position. This general notion allows to work on any

simple, layered and stochastic (Fig. 2, b) image, produced either

using a pinhole (OpenGL) rasterization, a deep framebufer [Nalbach

et al. 2014], LDI-style [Shade et al. 1998], using ray-tracing or by

stochastic rasterization [Akenine-Möller et al. 2007].

Runtime. Actual rendering is performed on (soft) global depth

layers [Kraus and Strengert 2007] (Fig. 2, c and Sec. 6). A global

depth layer holds the appearance and transparency of pixels at a

speciic depth interval, where intervals are typically smaller close

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

Laplacian Kernel Splating for Eficient Depth-of-field and Motion Blur Synthesis or Reconstruction • 55:3

Ouf-of-focusFocusIn-focus RGB DepthMotion

b) Input imagesa) PSF-sampling c) Image Laplacian splatting d) Poisson solution

M
o
t
io
n

S
lo

w
Fa

st

RGB DepthMotion
RGB DepthMotion

RGB DepthMotion

RGB DepthMotion

S
in

g
le

L
D

I
S

to
ch

a
st

ic (P
re

-c
o

m
p

u
ta

ti
o

n

R
u

n
ti

m
e

e) Result image

R
G

B

D
e

p
th

M
o

tio
n (

.
or

or

or

Fig. 2. Overview of our approach. The pre-computation (a) samples the space of all PSFs into a sparse representation. At runtime, one of the three types of

images we support (b) are treated as lists of labeled pixels, here shown as three column vectors, the first holding appearance, the second motion and the third

depth. To render, a PSF is splat for each pixel onto layered Laplacian images (c) that are integrated (d) and composed to produce the final result (e).

to the camera. Layering is required to capture non-linear occlusion

relations while our splatting performs linear addition within a layer.

Composing all layers provides the inal image. For every input pixel,

the pre-computed sparse PSF representation is drawn additively

onto one or multiple layers, each holding the Laplacian of the image

to reconstruct. When all pixels were splat, all layers are eiciently

integrated [Farbman et al. 2011], i. e., converted from the Laplacian

into the primal domain (Fig. 2, d). Finally, all layers are composed

into the result image (Fig. 2, e).

4 BACKGROUND

Here we recall the formalization of DoF and MB into point-spread

functions as well as the role of Laplacians in image manipulation.

SensorTime

Le
n

s

x
p(t = 0)

f (x)

p(t = 1)

Lens

a) b) c)

World point

∫
y

l

Fig. 3. Point-spread Functions: a) The lens-time integration domain and

range for a relative sensor location x. At diferent time coordinates, diferent

lens coordinates receive a contribution. b) There is one such function to

integrate for every sensor location. c) The sensor-lens-world geometry.

Point-spread Functions. Classic DoF can be described using point-

spread functions (PSFs) [Kolb et al. 1995]. In this work we formalize

the combination of DoF and MB using generalized space-time PSFs

(Fig. 3). Such a PSF describes the contribution of a constantly light-

emitting 3D point moving during a shutter interval T along a path

p(t) ∈ T → R3 to every relative sensor location x. Therefore,

f (x) =
∫

T

∫

L
R(y → l, p(t)) dl dt , (1)

where, x ∈ R2 is a 2D coordinate relative to y = P(p(0)) + x, the

absolute 2D sensor coordinate using projection P at start time, L is

the lens area and R(y → l, p) is a Dirac that peaks when a ray y → l

starting at 2D coordinate y in the sensor plane passing through 2D

lens coordinate l (a two-plane light ield parametrization) intersects

the world point p (a łray-point intersection”).

As we will be dealing with multiple PSFs for diferent motion,

lenses and absolute sensor locations we deine a space of PSFs

f (x)(s) subject to a PSF parameter vector s ∈ Rns , as in

f (x)(s) =
∫

T

∫

L
R(s)(y → l, p(s)(t)) dl dt , (2)

so the ray formation R and the motion p depend on the PSF param-

eter vector s.

Laplacians. The Laplacian f (x) ∈ R2 → R of a 2D image is

deined as a scalar ield

∆f (x) = div(∇f) = ∂
2 f (x)
∂x2

+

∂2 f (x)
∂y2

, x = (x ,y)T,

where div is the scalar divergence of a 2D vector ield and ∇ the

gradient, a 2D vector ield, of a scalar function.

Typically, Green’s functions are used to reconstruct f from ∆f .

For this Poisson problem we consider an ininite 2D domain with no

boundary conditions, which leads to the free-space Green’s convo-

lution kernel д(d) = 1
2π log(d +ϵ). This kernel is radially symmetric

and only depends on the distance d to the origin. The value ϵ (we

use ϵ = .5px) prevents a singularity at d = 0. Our image is com-

pactly supported, that is, it is zero outside the PSF-extended unit

square, which enforces enough constraints to make the integration

solution unique. We will use G to denote the operator applying the

convolution with Green’s function. This is routinely done in the

Fourier domain [Bhat et al. 2008] or ś even more eiciently ś using

a pyramidal scheme [Farbman et al. 2011]. A useful property is the

rotation-invariance of G: integration of a rotated Laplacian yields

the same results as the rotation of an integrated Laplacian.

In typical gradient image editing tasks, the manipulated [Bhat

et al. 2010] or noisy [Lehtinen et al. 2013] gradient ∇f is given and a

function f is to be found by employing the Laplacian as a means for

inding a least-squares solution, often with additional regularization

(screened). Our method never acts on gradient vector ields ∇f , but

directly on the scalar Laplacian ∆f , allowing both sparse processing

and accurate, yet eicient integration [Farbman et al. 2011].

Laplacian Rasterization. Our approach heavily relies on the fact

that splatting can be performed in the Laplacian domain, i. e.,

splat(f , I) = G(∆(splat(f , I))) = G(splat(∆f , I)),

where splat(f , I) denotes additive splatting (scattering) of a spatially-
varying function f into an image I . The second equality holds due

to the commutativity and distributivity of all involved operations.

Please note that the above would also hold if splatting was replaced

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

55:4 • Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel

by convolution [Heckbert 1986]. We opt for splatting, however, as

it delivers higher-quality results for our application domain.

To understand the relation of MB and DoF to the Laplacian, lets

consider the cost of splatting PSFs onto pixels using diferent meth-

ods in the following three paragraphs:

Drawing a solid circle area appears to require illing all the, say,

na pixels inside an image with np pixels. Simple drawing equals to

evaluating a function f (x) that is 1 inside the circle and 0 outside.

Alternatively, we could draw ∆f (x) and later solve for f , leading to

the same result. Now, drawing this Laplacian would in general also

cost na drawing operations and additionally np operations to solve

a Poisson problem f = G∆f using a pyramidal approach [Farbman

et al. 2011]. This does not yet provide any beneit.

Consider drawing the sum of np circles, one for each pixel. This

requires na × np ill operations. Drawing using the Laplacian, still

requires 2 × np × na operations, while classic drawing requires

np × na so no immediate beneit here either.

The key insight is that the Laplacian of the typical PSFs found

in DoF/MB is very sparse: Splatting only a sparse approximation

comprising of na pixels of the Laplacian, can result in a very similar

reconstructed result. This means that na is much smaller for ∆f

than na is for f . Our approach builds on this property.

5 PRE-CALCULATION: PSF SAMPLING

Sampling the space of all PSFs comprises of diferent stages (Fig. 4).

First, we have to parametrize the space using a PSF model, such that

we have a low-dimensional efective way to cover it as explained in

Sec. 5.1. Second, we need to choose where to place samples, such

that it is best represented where it is needed most (Sec. 5.2). Third,

computing the PSF at speciic sample positions can be challenging

for complex lenses in combination with MB as explained in Sec. 5.3.

Fourth, pre-iltering (Sec. 5.4) as with any sampling, also in the

space of PSFs can prevent aliasing. Finally, the dense pre-iltered

PSF sample is converted into a sparse set of points (spreadlets)

approximating its Laplacian in an optimization step (Sec. 5.5).

5.1 PSF Model

Our approach allows for diferent PSF models (Tbl. 1) and resulting

spaces to be discussed next in increasing complexity. Some PSFs are

monochromatic, others support chromatic aberration. Coordinates

in this space will be denoted as s ∈ S = Rns .

Some PSF models exhibit a natural rotational symmetry. As the

Laplacian and, consequently, the integration operator G are rota-

tional invariant, we can omit the corresponding angular dimension

during sampling. Note that this would not hold for other (diferen-

tial) representations and reconstructions such as quad trees [Crow

1984]. While an omitted sampling dimension signiicantly reduces

memory, symmetries are not necessary for our approach to work.

Circular Depth-of-ield. The SimpleLensmodel is assuming a thin

lens [Kolb et al. 1995]. The result is a one-dimensional space of

monochromatic PSFs parametrized by the scalar circle of confusion

(CoC) radius. The PSF is shift-invariant, i. e., points at the same depth

are mapped to the same circle, regardless of the image position.

Table 1. The PSF model zoo.

Name ns Color Smp. β Size Spar.

SimpleLens 1 ✗ 100 2.0 1.1MB 31.3 %

Combined 2 ✗ 400 2.0, 1.0 4.2MB 9.3 %

PhysicalLens 2 ✓ 4,000 2.5, 1.2 30.8MB 2.2 %

Volume 1 ✓ 200 1.0 5.3MB 18.4 %

Stylized 1 ✓ 200 1.5 9.0MB 24.9 %

DoF and MB. The Combinedmodel adds motion blur to the previ-

ous model. It uses linear motion of constant projected speed and no

motion in depth. This supports arbitrary viewer and object motion

and deformation. More complex motion is to be composed from

linear segments. This results in a two-dimensional monochromatic

model, with scalar motion length (speed) as an additional parameter.

Physical Lens. The PSF shape depends on absolute sensor position

in our PhysicalLens model. Assuming this spatial layout to be

rotation-invariant, we parametrize using the distance to the sensor

center (eccentricity). This resulting space is two-dimensional: depth

and eccentricity. Here, a chromatic PSF becomes important: In a

physical lens model, light paths depend on wavelength and the PSF

shows colored fringes. We use a simple bi-convex spherical lens in

all our results.

Scattering. Light scattering in participating media can also be

described as a PSF [Premože et al. 2004]. Notably, the shape of the

PSF in this case resembles the Green’s function itself, i. e., it is highly

compressible. For our Volume model we implemented volumetric

light tracing in a homogeneous medium using Woodcock tracking

and a Henyey-Greenstein (HG) phase function. The parameter of

this space is the distance to the camera and the medium parameters

remain ixed. We use a density of .9 and a HG anisotropy of .8 and

RGB albedo of (1, 1, .9).

Stylized. Finally, we show how our approach is not limited to any

physical model, but can use any mapping between pixel labels and

PSFs. The Stylized PSF in our experiments is a logo with chromatic

aberrations, scaled depending on the distance to the focal plane.

5.2 Sample placement

Our approach achieves an appropriate cover of the PSF space using

a power remapping and a nested grid. Both methods seek to place

samples non-uniformly across the sample space, while retaining

constant access time. For our PSF models it proved beneicial to

allocate more samples to parameter ranges where artifacts due to

quantization and pre-iltering (Sec. 5.4) would be most objectionable.

This is typically the case for PSFs where one or multiple coordinates

are small, e. g., the slow-motion or near-focus PSFs in Combined.

Power Remapping. The power remapping changes the physical

PSF coordinates (Fig. 5, a) such that they cover the range from

0 to 1 non-uniformly by using a component-wise exponentiation

p(s) = sβ with a PSF model-speciic vector β listed in Tbl. 1 as seen

in Fig. 5, b. For β > 1 this results in a higher resolution for small

coordinates and a lower resolution for large coordinates.

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

Laplacian Kernel Splating for Eficient Depth-of-field and Motion Blur Synthesis or Reconstruction • 55:5

a) Sample space b) Sample placement c) Sample generation e) Laplacian f) Sparsi�cationd) Pre-�ltering

D
e

p
th

Eccentricity

Fig. 4. The steps of our PSF sampling: a) Definition of the sample space. b) Non-uniform placement of samples (blue circles). c) Generation of the PSF at each

sample. d) Pre-filtering in the sample space. e) Computing the Laplacian and f) sparsification into a set of points.

c)b)

p(s)β

d)

g1

g-1

0

1

2

3

0 1 2 3

a)

0 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

17 21 22 23

18

19

20

24 26

25
27

Fig. 5. Nested grid: a) Physical parameter grid. b) Its power remapping. c)

Our nested grid topology. d) List of cells. (Please see text in Sec. 5.2.)

Nested Grid. A straight-forward solution is to sample in a regular

grid after the power-remapping.While a regular grid can be accessed

in constant time it requires exponential pre-compute time and stor-

age. Note that the power remapping does not change this property.

We observe that our PSF models allow for a dramatically reduced

resolution for large coordinates to such an extent that we chose

to abandon the grid topology. Therefore, we suggest a nested grid,

reducing the storage to polynomial time while retaining constant

access time (Fig. 5, c).

We achieve this by increasing the length of the sample cell edges

linearly with increasing coordinates for all required dimensions.

This naturally results in a nested structure with diferent resolution

levels (colors and large numbers in Fig. 5, c). We note that for the

2D 9 × 9 example shown in Fig. 5 a regular grid would have 81

entries, while our nested grid requires 28 entries. To work with

such grids, we require two functions: a mapping д(s) ∈ Rns → N0
from a continuous coordinate to an index and an inverse mapping

д−1(i) ∈ N0 → Rns from an index to a coordinate. The forward map

is required at runtime, the backward one at the pre-computation

step.

The backward mapping д−1(i) is constructed incrementally by

placing boxes until a level is illed, continuing until the space is

illed. Note that some of those boxes are not cubic, as a cube would

fall outside the space on such a lattice. It is consequently stored as

a list of boxes (Fig. 5, d).

The forward mapping д(s) is performed in two steps: First, we

compute the minimum coordinate smin = min(s1, . . . , sns). By con-

struction of the nested grid, this value determines the resolution

level. Since every level starts at a triangular number (triangles in

Fig. 5, c), the level index l equals the triangular root of smin , i. e.,

l = ⌊(
√
8smin + 1 − 1)/2⌋. Second, the inal cell index i is the sum

i = i1 + i2 of the inter-level index and the intra-level index. The

inter-level index i1 is the sum of all indices before the current level

l and we store this for all levels in a small table (indices of the boxes

on the diagonal in Fig. 5, c). The intra-level index i2 is computed

just as in a regular grid within the level.

5.3 Sample generation

Sampling f (si) for each si means to evaluate many (for each pixel)

complex integrals as deined in Eq. 1. The value of the function is

an RGB 2D image, for us of resolution 512 pixels square. While a

closed-form solution might exist for special models, such as Simple-

Lens, the task becomes harder for motion, forming capsule-shaped

intensity-varying proiles as well as the famous cat eye-shaped lares.

To compute the PSF of a complex lens system, including chromatic

aberration is a research question on its own [Hullin et al. 2011].

The very general solution is light tracing [Dutré et al. 1993], which

we opt to use, as it scales to complex lens systems including time-

sampling. We typically use 700 million rays per PSF in a specialized

GPU implementation. The high number of rays is required as difer-

entiation in later steps will amplify any remaining variance. Note

that our run-time eiciency is independent of the compute time of

the PSF, only the sparsity in the Laplacian domain is relevant.

5.4 Pre-filtering

One sample si is a representative for an entire hyper-volume Si in
the space of PSFs. As we will use a single discrete pre-computed PSF

sample that is nearest to the PSF required at runtime, a PSF sample

should represent all PSFs that are closer to it than to any other.

Failure to do so would result in aliasing or require a prohibitively

large number of PSF samples. As a solution we suggest to pre-ilter

the PSF as in

f̄ (x)(si) =
∫

N(si)

∫

T

∫

L
r (| |si − s| |)R(s)(y → l, p(s)(t)) dl dt ds ,

for all samples in its neighborhoodN(si), where r (d) is a reconstruc-
tion kernel such as a Gaussian. This can be achieved by just another

outer integration over the hyper-volume of the neighborhood in PSF

space in the light tracing MC loop evaluating Eq. 1 above. Instead

of tracing a particle through always the same PSF f (si), the PSF
parameters are varied as well to fall into N(si). For SimpleLens,
instead of using a single discrete confusion, a range of confusions is

used, etc. The neighborhood N(si) is a simple-to-ilter axis-aligned

box with varying extent that can be computed from the inverse

sample density used in Sec. 5.2.

Efectively, pre-iltering blurs the PSF spatially, trading aliasing

against blur. As a typical PSF is spatially band-limited as well ś no

CoC in a real camera system is fully sharp ś this appears plausible.

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

55:6 • Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel

5.5 Sparsification

Instead of storing each PSF f̄ (si), which is dense, we store its sparse

Laplacian ∆ f̄ (si). This helps representing entire areas of the dense
PSF by sparse isolated peakswe call łspreadlets”.We therefore would

like to ind a set of np,i points with 2D position xi, j and values ∆ f̄i, j
that minimizes the reconstruction cost

c(np,i , xi ,∆ f̄i | f) =
∫

(0,1)2
| f (x)

︸︷︷︸

Signal

−G

np,i∑

j=0

∆ f̄i, j1(xi , x)

︸ ︷︷ ︸

Reconstruction

|dx,

in respect to a PSF f , where 1(x0, x1) is an indicator function that

is one if x0 = x1 and zero otherwise.

Minimizing c poses several challenges: i) The cost landscape is

highly non-convex, since every spreadlet adds one local extremum

to it. ii) The reconstruction operatorG has global support, resulting

in a diicult condition. iii) The dimensionality of the problem is

variable, since the point count np,i is unknown. iv) We can splat

only to discrete pixel coordinates, making the optimization a mixed

problem where the xi are integer and ∆ f̄i are continuous.

Our attempts to partially (i. e., with a ixednp,i and continuous xi)

optimize via gradient descent or nonlinear conjugate gradient failed.

However, we found the following practical procedure to minimize

the cost in several steps (Fig. 6).

Laplacian

image �lter

Dart

throwing

Lloyd

relaxation

Simulated

annealing

Input

PSF

Fig. 6. Our four steps of PSF sparsification (conceptual illustration).

First, we apply a 3 × 3 Laplacian ilter to f̄ , producing ∆ f̄ . This

transformation into our target domain maps constant and linear

regions to zero.

Second, we create a 2D Poisson disk pattern {xi,0, . . . , xi,np,i }
with |∆ f̄ | as an importance function using a dart-throwing algo-

rithm. We stop the placement after 10, 000 failed random attempts.

This step initializes the sparse spreadlet representation we seek to

obtain, by placing samples according to the local complexity of the

PSF and at the same time determining the irst free variable np,i of

our cost function.

To improve the spatial arrangement, we run 50 iterations of Lloyd

[1982] relaxation, again using |∆ f̄ | for weighting.
Next, we sum the Laplacian PSF values in the Voronoi cell of

every xi, j and store it as a value ∆ f̄ (xi, j). This way, each Voronoi

cell of the Laplacian is collapsed into a single pixel. This signii-

cantly increases sparsity, especially for areas with large cells. As the

cell area is inversely proportional to the Laplacian PSF value, the

values ∆ f̄ (xi, j) are very similar for diferent j, i. e., have a similar

contribution to the inal image.

Finally, we apply 400 steps of simulated annealing, where in each

iteration, we irst pick a fraction (1 %) of the integer positions and

change them by at most one pixel, and second, re-assign the values

∆ f̄ (xi, j) according to the new Voronoi cells as described above.

When two points happen to fall on the same integer grid coordinate,

they can be merged, further increasing sparsity.

6 RUNTIME: PSF SPLATTING

The representation of all possible PSFs acquired in the previous

section can now be used to eiciently compute new images with

distribution efects. The procedure is similar to a trivial code that

iterates all pixels and densely draws their PSF in linear time [Lee

et al. 2008]. Instead, we store (Sec. 6.1) and splat the sparse Laplacian

of the PSF (Sec. 6.2) of all pixels, followed by a inal transform of

the entire image from the Laplacian to the primal domain (Sec. 6.3).

6.1 Sample storage

Each sample si has a varying number of points np,i . We concatenate

all points xi, j of all samples into a large sequence that is stored as a

VBO P . The same is done for all function values∆ f̄i, j stored in a VBO

V . The typical size of such a representation is several mega-bytes

(Tbl. 1). The number of points changes for every sample: An in-focus

sample requires fewer points than a moving lens lare. To eiciently

handle a sequence of unstructured lists, we irst pre-compute the

vector of cumulative sums nc,i of all points in all samples with

indices smaller than i and store it into a vector C .

6.2 Sample splating

Splatting happens for all input pixels in all layers independently

and in parallel. We will therefore describe it for a single pixel at

absolute sensor position y here. Let s be the PSF coordinate of that

pixel. We now pick the sample si that is closest to s and draw all

points to positions y + xi with value ∆ f̄ (xi).

GPU Implementation. Splatting is implemented in a compute

shader that executes one thread for every pixel. Each thread fetches

s for each pixel and computes i , the index of the nearest PSF sample.

After compensating for the non-linearities, the nested grid structure

of our space (Sec. 5.2) makes this a simple and eicient O(1) opera-
tion. If the PSF model employs symmetries, they have to be applied

at this step: e. g., for motion blur, the spreadlets are pre-computed for

motion in a certain reference direction and now have to be rotated

to align with a speciic direction of motion. Next the spreadlet is

multiplied by the pixel color and drawn in a for loop over all points

using atomicFloatAdd into four R32F textures.

Boundary. The image has to be padded by a boundary large

enough to accommodate for the largest PSF used. It is not sui-

cient to simply cut the kernel: consider a simple 1D example of a

hat function that spans the image boundary. Depending on the PSF,

that can include a translational part, to sample a certain output sen-

sor size, the size of a virtual sensor that generates the input pixels

might need to be substantially bigger or can be much smaller than

the output sensor. The same applies for sampling considerations if

the PSF is magnifying. Also note that the boundary only consumes

memory, no splatting time and extra amount of integration time

linear in its size.

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

Laplacian Kernel Splating for Eficient Depth-of-field and Motion Blur Synthesis or Reconstruction • 55:7

Layering Details. Since our approach operates on labeled pixel

lists (Fig. 2, b), we naturally support (soft) global depth layers, LDIs

[Shade et al. 1998], or deep framebufers [Nalbach et al. 2014] as

input formats. However, we need to splat into global depth layers for

being able to properly pre-integrate per-layer radiance and opacity

[Vaidyanathan et al. 2015]. Splatting is done independently for each

output layer. If soft layering is desired [Kraus and Strengert 2007],

splats have to be drawn into more than one layer and weighted.

In any case, we apply the re-weighting as suggested by Lee and

co-workers [2008] when compositing the layers back-to-front.

In all our experiments we use nl global input and output layers,

where nl = 1 can be useful in some conditions. We bin them in units

of constant parallax [Lee et al. 2009; Munkberg et al. 2014].

Note that layering only ampliies memory and merely shifts

around the work: In particular the dominant splatting cost is not

multiplied by nl as a pixel is typically only contained in one layer

(or two layers if soft) and empty pixels will be culled very early on.

Stochastic Frame-bufers. Special considerations are to be taken if

the framebufer is stochastic (Fig. 7, a). An example is DoF: a surface

projecting to the sensor position y′ at l = t = 0 will move to a new

sensor position y (yellow point in Fig. 7, b), as they are distributed

across the entire circle of confusion.

a) b) c) d) e)

Fig. 7. Illustration of PSF splating in a stochastic image with DoF: a) Sto-

chastic image of a single bright point under defocus. b) A single PSF splat

(yellow) centered around a single pixel at y. c) Overlay of all PSFs. d) The

same single splat, but now centered around y′. e) Overlay of all PSFs.

Just running the above procedure on this data would mean to

place another circle of confusion on an already distributed pixel

i. e., to apply the PSF twice (Fig. 7, c). As every pixel has a unique

distribution coordinate si , we can re-compute its original absolute

sensor position y′, and splat the PSF around y′ instead of y. Con-

ceptually, for the DoF example, this realigns the PSF such that it

is drawn around the center of the CoC it belongs to, not around

the pixel itself that is part of the CoC (Fig. 7, dśe). Consequently,

non-stochastic input is a special case of stochastic input with y = y′.

6.3 Integration

After all points for all pixels were drawn, the image is transformed

from the Laplacian into the primary domain. This is eiciently done

using convolutional pyramids by Farbman [2011] which takes 6ms

for a 1024×1024 image.

6.4 Fast Track

In practice, some PSFs can have less sparsity than others. The main

speed-up we achieve is for large PSFs that are sparse, which also

implies that splatting small PSFs using our sparsiication scheme

is not efective. Fortunately, our approach can combine both strate-

gies seamlessly. To this end, we maintain two images per layer: A

Laplacian image to which sparse points are splat and a direct one.

The decision to draw sparse or dense is made simply on the number

of points. Both images are added after the Laplacian image was

integrated. This strategy is used in all results shown in this paper

and typically amounts to about 9% of the PSFs.

7 RESULTS

In this section we show qualitative (Sec. 7.1), quantitative (Sec. 7.2)

results of our approach and an analysis of its properties (Sec. 7.3).

Methods. We compare Our approach to diferent alternatives:

A Splatting approach draws the dense ground-truth PSF. This

is an upper bound on what we can achieve, as our Laplacians are

just an approximation. We would hope to achieve similar quality,

just at a much higher speed.

The Filtering method uses the same space of PSFs we use, but

instead of splatting the PSF, we ilter using the PSF. Note that this

is an upper bound on what any iltering-based method can achieve.

We expect to achieve both higher quality and speed. We do not

apply iltering to PhysicalLens, as neither the pre-computed dense

PSF images it into memory, nor is it feasible to compute them for

every pixel on the ly.

Many methods to remove noise, in particular the noise speciic

to path-traced images, exist [Belcour et al. 2013; Egan et al. 2009;

Kontkanen et al. 2006; McCool 1999; Munkberg et al. 2014; Sen and

Darabi 2012; Soler et al. 2009]. As all these methods have diferent

trade-ofs and assumptions, we here opt for BM3D, a general state-

of-the-art image denoiser [Dabov et al. 2006] that has been used to

denoise path-traced images before [Kalantari and Sen 2013].

The Reference method uses path tracing based on a reasonably

implemented GPU ray-tracer with an SAH-build BVH where nodes

are extended to bound space-time primitives.

7.1 ualitative

Qualitative results of synthesis and reconstruction are shown in

Fig. 8 and Fig. 9.

Synthesis. In Fig. 8 we see in łWhirl” how Our method produces

detailed PSFs that add cinematic quality to the shot, with circular

bokeh and long motion trails. MB and DoF arising from the com-

plex motion patterns are faithfully synthesized, while the colorful

specular highlights in łCoins” are transformed into overlapping, yet

distinct circles of confusion. The rotational motion in łGears”, here

in combination with bright specular highlights under defocus, gives

rise to appealing high-contrast image regions entirely deined by

the PSFs produced. The łRain” scene rendered with the physical

model shows the expected complex cat-eye shapes in image corners,

where the CoC is deformed. Chromatic aberration is reproduced as

well. The same igure shows the comparison to alternative methods

as insets. We see that the Filtering method looks quite diferent,

while the method based on Splatting is very similar to Ours and

the Reference.

Results for the Stylized and Volume PSF models are shown in

Fig. 12. We see how stylization provides a non-physical efect where

the PSFs take the shape of a logo, while for the participating media

PSF the colors shift according to the model. In addition, a distinct

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

55:8 • Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel

Our

Ref.

Splat

Filter

Fig. 8. Results of our (large) as well as other (insets) synthesis approaches on diferent scenes. (1024×1024 pixels).

blur can be observed, in particular for locations in the background,

as expected from scattered light.

Reconstruction. In Fig. 9 we use our method for reconstructing

from stochastic input. While the input already contains MB and

DoF, our method preserves it, yet removes the noise. In several

cases, our method reconstructs features that are almost invisible in

the input to the naked eye, such as in łRain”. Please note how our

carefully aligned high-frequency PSFs are able to reconstruct subtle

semi-transparencies.

7.2 uantitative

We provide quantitative results in terms of comparison to a refer-

ence and alternative approaches. Quality is measured in SSIM (larger

is better) and speed in milliseconds. All comparisons are done in

resolution 1024×1024 on an Intel Xeon E5-1607 CPU in combination

with a Nvidia Geforce GTX 980Ti GPU. The pre-computation re-

quires roughly 20 seconds for one PSF. Numerical results are stated

in Tbl. 2 for synthesis and in Tbl. 3 for reconstruction. We see our

approach consistently has the highest speed and provides images

of high similarity to the reference. Splatting has a similar error,

but is typically slower by almost one order of magnitude, as our

representation is typically one order of magnitude more sparse.

7.3 Analysis

Here we analyze how our approach and variants thereof perform un-

der diferent conditions. As we already established we can generate

images similar to a reference, provided we have a suitable (sparse

Table 2. Numerical results for Fig. 8.

Our Filter Splat Ref.

Model Time Err. Time Err. Time Err. Time

Whirl Comb. 88.0ms .94 299.6ms .81 722.8ms .94 592 s

Coins Comb. 163.0ms .96 368.1ms .92 1930.9ms .96 232 s

Rain Phy. 126.3ms .90 Ð Ð 7170.4ms .88 >1000 s

Gear Comb. 65.9ms .94 186.2ms .87 783.8ms .96 >1000 s

Table 3. Numerical results for Fig. 9.

Our BM3D Splat Ref.

Model Time Err. Err. Time Err. Time

Whirl Comb. 75.8ms .95 .93 605.3ms .95 346 s

Coins Comb. 496.4ms .94 .91 2652.3ms .94 366 s

Rain Comb. 499.5ms .96 .89 2276.2ms .96 >1000 s

Gear Comb. 1699.1ms .91 .91 3495.8ms .92 >1000 s

and low-error) PSF representation, we perform analysis purely on

the space of PSFs images (the test set) instead of complex images.

Three qualities are important: i) the sparsity in percentage (which

translates into computational eiciency, up to a small additive con-

stant overhead for integration), ii) the similarity measured between

PSFs in terms of SSIM, and inally, iii) a good eiciency ratio between

the two, measured in similarity-per-sparsity.

Sparsity. Our representation achieves an average sparsity of 9.3 %

(Fig. 10, a) while retaining an average similarity of .97, which results

in an eiciency if 10.75. We further look into the distribution of

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

Laplacian Kernel Splating for Eficient Depth-of-field and Motion Blur Synthesis or Reconstruction • 55:9

Our

Ref.

Splat

BM3D

Input

Fig. 9. Results of our (large) as well as other (insets) reconstruction approaches on diferent scenes. (1024×1024 pixels, 1spp path traced input).

sparsity (Fig. 10, b) and similarity (Fig. 10, c). The sparsity distribu-

tion is peaked around very sparse PSFs and most solutions have a

high similarity. Only very few PSFs have a low similarity.

Laplacian Domain. We have chosen to use the Laplacian domain

while other representations could also achieve the sparsiication

required. A typical sparse coding that is eicient to produce and

generate is wavelets, i. e., a quad tree [Crow 1984] (QT). To this end

we convert the test set into the QT domain. In Fig. 10, a, adjusting QT

for a similar sparsity, we ind a lower similarity of .89, providing an

inferior eiciency of 9.67. A distribution of sparsity and similarity is

seen in Fig. 10, b and c. We see that the sparsity is not as peaked for

very sparse solutions while at the same time, many more solutions

are of low similarity. Note that a QT is not rotation-invariant, leading

to an order of magnitude more memory requirement. This indicates

the Laplacian is a good representation for PSF sparsiication in terms

of memory and speed.

Spreadlet Count. We have chosen two other operational points of

our approach in Fig. 10, d where the average sparsity is roughly half

and twice as large as the one we suggest to use. We observe that

quality saturates at a very high similarity to a reference, indicating

that sparsity can be used to control quality.

Sample Count. We instrument the relation of PSF sample count

and average similarity between the closest sampled PSF and the

ground-truth PSF at 1,000 random coordinates in Fig. 10, e. We see

that increasing the number of samples increases similarity. This is

as pre-iltering introduces blur. In practice, the PSF is not applied

to individual pixels, but to groups of pixels which also is a blur,

resulting in the good end-image similarity we observe.

Approximation Quality. Our approach builds on the observation

that a sparse approximation of the Laplacian of certain PSFs is feasi-

ble. To better understand the approximation behavior of our sparsi-

ication scheme we analyze the reconstruction quality for diferent

PSF types of diferent sizes (S/M/L) with varying sparsity in Fig. 10,

f. We compare isotropic Gaussian functions (σ = 25/40/55px)
with our DoF CoCs (r = 25/50/100px) and capsule-shaped motion-

blurred CoCs (r = 50/50/100px , l = 50/128/128px). We observe

that the reconstruction quality for the typical PSFs we target in-

creases with spatial extent, while the opposite can be found for

corresponding Gaussians. This can be attributed to the relatively

small total variation of our large-scale target PSFs, allowing a rep-

resentation by a small set of Laplacian peaks. This is in contrast

to the uniform smoothness of Gaussians. For the binary DoF ker-

nels, which exhibit natural sparsity in the Laplacian domain, the

reconstruction quality saturates at 100% once enough spreadlets are

allocated.

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

55:10 • Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel

Sparsity

S
im

il
a

ri
ty

5% 12%

.97

.95

Sparsity

Fr
e

q
u

e
n

c
y

QT

Our

d)

10% 100%

c)

9.3%

S
p

a
rs

it
y

a)

9.4% .97

S
im

il
a

ri
ty

.89

b)

Similarity

Fr
e

q
u

e
n

c
y

0-.8 .98-1

9.3%

.966

.96

4.3%

 .953

12.0%

.966

Samples Sparsity

S
im

il
a

ri
ty

S
im

il
a

ri
ty

200 900

.8

.6

2% 32%

e) f)

.7

.8-.82

400

.67

175

 .56

900

.78

.5 .4

1

.8

.6
Gauss

DoF
MB+DoF

S
M
L

Fig. 10. Analysis for Combined: a) Mean sparsity and similarity for our approach and a quad tree (QT). b, c) Sparsity resp. similarity histograms for Laplacian

and QT. Frequency counts how oten a PSF with this property occurs. d) Relation of sparsity and similarity for a 0.5× and a 2×-sparsity operational point. e)

Relation of sample count and similarity for the same operational points. f) Relation of sparsity (log. scale) and similarity for diferently-sized (S, M, L) PSFs.

Optimization. Here we report results of ablational studies regard-

ing our optimization procedure. The mean L1 error across our PSF

corpus relative to dart throwing only (100%) is 96.7% for dart throw-

ing and Lloyd relaxation, 87.1% for dart throwing and simulated

annealing, and 86.5% for the full procedure. While this is a modest

mean improvement, it removes outliers that are visually disturbing.

Without pre-�lter With pre-�lter Reference

Fig. 11. Comparing the efect of pre-filtering for the Combined model.

7.4 Limitations

While our approach is impaired by typical limitations inherent to

image-based synthesis and reconstruction, such as layer quantiza-

tion and the assumption of difuse relectance, we discuss three

limitations and artifacts unique to our approach in the following

paragraphs.

Pre-iltering. The efect of pre-iltering for the Combined model

is studied in Fig. 11. Without pre-iltering, we see discontinuity

errors. With pre-iltering the aliasing is converted into blur, a less

suspicious artifact when comparing to the reference.

Spreadlet Undersampling. Occasionally, for PSFswith small spatial

extent and high frequencies, the dart throwing step of our optimiza-

tion procedure fails to allocate enough spreadlets. This results in

blotchy artifacts after reconstruction, as can be observed in the third

main column of Fig. 8.

Curse of Dimensionality. Our approach requires full sample cover-

age of the PSF spaces it operates on. Even though the sample count

is reduced by utilizing our nested grid structure and by exploiting

rotational symmetries, higher-dimensional PSF models, like a phys-

ical lens in combination with a higher-order motion model, would

require a prohibitive amount of pre-computation.

8 CONCLUSION

We have described the irst method to achieve interactive perfor-

mance when synthesizing and reconstructing cinematic-quality

combinations of DoF and MB. This was achieved by splatting pre-

computed sparse PSFs in the Laplacian domain.

In future work we would like to overcome the limitation to a

low number of parameter dimensions due to pre-calculation. For

example, we approximate the camera motion using linear segments,

mostly because of the dimensionality-restriction imposed by the

pre-calculation. While DoF and MB are a typical and important

combination, the ability to change the DoF in a dynamical optical

system is desirable. We see our approach as a toolkit from which

more complex interactions between depth of ield, motion blur, par-

ticipating media or artistic control can be made to it computational

eiciency requirements in the future.

ACKNOWLEDGEMENTS

The authors would like to thank Gabriel Brostow, Bernhard Reinert,

and Rhaleb Zayer. This workwas partly supported by the Fraunhofer

and the Max Planck cooperation program within the framework of

the German pact for research and innovation (PFI).

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

Laplacian Kernel Splating for Eficient Depth-of-field and Motion Blur Synthesis or Reconstruction • 55:11

Stylized PSF Participating media PSF

Fig. 12. Results for the Stylized (let) and Volume (right) PSF models.

REFERENCES
Tomas Akenine-Möller, Jacob Munkberg, and Jon Hasselgren. 2007. Stochastic rasteri-

zation using time-continuous triangles. In Proc. Graphics Hardware. 9.
Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013.

5D covariance tracing for eicient defocus and motion blur. ACM Trans. Graph. 32,
3 (2013).

Pravin Bhat, Brian Curless, Michael Cohen, and C Zitnick. 2008. Fourier analysis of the
2D screened Poisson equation for gradient domain problems. ECCV (2008), 114ś28.

Pravin Bhat, C Lawrence Zitnick, Michael Cohen, and Brian Curless. 2010. Gradientshop:
A gradient-domain optimization framework for image and video iltering. ACM
Trans. Graph. 29, 2 (2010).

Robert L Cook, Loren Carpenter, and Edwin Catmull. 1987. The REYES image rendering
architecture. In ACM SIGGRAPH Computer Graphics, Vol. 21. 95ś102.

Robert L Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed ray tracing. In
ACM SIGGRAPH Computer Graphics, Vol. 18. ACM, 137ś145.

Franklin C Crow. 1984. Summed-area tables for texture mapping. ACM SIGGRAPH
Computer Graphics 18, 3 (1984), 207ś12.

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2006. Image
denoising with block-matching and 3D iltering. In Proc. SPIE, Vol. 6064.

Philip Dutré, Eric P Lafortune, and Yves Willems. 1993. Monte Carlo light tracing
with direct computation of pixel intensities. In Proc. Computational Graphics and
Visualisation Techniques. 128ś37.

Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frédo Durand, and Ravi Ramamoorthi.
2009. Frequency analysis and sheared reconstruction for rendering motion blur.
ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3 (2009).

Zeev Farbman, Raanan Fattal, and Dani Lischinski. 2011. Convolution pyramids. ACM
Trans. Graph. 30, 6 (2011), 175ś1.

Kayvon Fatahalian, Edward Luong, Solomon Boulos, Kurt Akeley, William R Mark, and
Pat Hanrahan. 2009. Data-parallel rasterization of micropolygons with defocus and
motion blur. In Proc. HPG. 59ś68.

Alain Fournier and Eugene Fiume. 1988. Constant-time iltering with space-variant
kernels. In ACM SIGGRAPH Computer Graphics, Vol. 22. ACM, 229ś238.

Irena Galić, Joachim Weickert, Martin Welk, Andrés Bruhn, Alexander Belyaev, and
Hans-Peter Seidel. 2008. Image compression with anisotropic difusion. J Math.
Imaging and Vision 31, 2 (2008), 255ś69.

Jhonny Göransson and Andreas Karlsson. 2007. Practical post-process depth of ield.
In GPU Gems 3. 583ś606.

Michael Goy. 2013. American cinematographer manual. Vol. 10. Am. Cinemat.
Paul Haeberli and Kurt Akeley. 1990. The accumulation bufer: hardware support for

high-quality rendering. ACM SIGGRAPH Computer Graphics 24, 4 (1990), 309ś318.
Paul S Heckbert. 1986. Filtering by repeated integration. In ACM SIGGRAPH Computer

Graphics, Vol. 20. 315ś21.
Matthias Hullin, Elmar Eisemann, Hans-Peter Seidel, and Sungkil Lee. 2011. Physically-

based real-time lens lare rendering. ACM Trans Graph. (Proc. SIGGRAPH Asia) 30, 4
(2011), 108.

Nima Khademi Kalantari and Pradeep Sen. 2013. Removing the noise in Monte Carlo
rendering with general image denoising algorithms. Comp. Graph. Forum 32, 2
(2013), 93ś102.

Craig Kolb, Don Mitchell, and Pat Hanrahan. 1995. A realistic camera model for
computer graphics. In SIGGRAPH. 317ś24.

Janne Kontkanen, Jussi Räsänen, and Alexander Keller. 2006. Irradiance iltering for
Monte Carlo ray tracing. , 259ś272 pages.

Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael
Goesele. 2013. Image-based rendering in the gradient domain. ACM Trans. Graph.
(Proc. SIGGRAPH) 32, 6 (2013).

Martin Kraus and Magnus Strengert. 2007. Depth-of-Field Rendering by Pyramidal
Image Processing. In Comp. Graph Forum, Vol. 26. 645ś54.

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2009. Depth-of-ield rendering
with multiview synthesis. In ACM Trans. Graph. (Proc. SIGRAPH Asia), Vol. 28.

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2010. Real-time lens blur efects
and focus control. ACM Trans. Graph (Proc. SIGGRAPH) 29, 4 (2010).

Sungkil Lee, Gerard Jounghyun Kim, and Seungmoon Choi. 2008. Real-Time Depth-of-
Field Rendering Using Point Splatting on Per-Pixel Layers. Comp. Graph. Forum 27,
7 (2008), 1955ś62.

Jaakko Lehtinen, Timo Aila, Jiawen Chen, Samuli Laine, and Frédo Durand. 2011.
Temporal Light Field Reconstruction for Rendering Distribution Efects. ACM Trans.
Graph. (Proc. SIGGRAPH) 30, 4 (2011).

Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo
Aila. 2013. Gradient-domain metropolis light transport. ACM Trans. Graph. (Proc.
SIGGRAPH) 32, 4 (2013), 95.

Thomas Leimkühler, Hans-Peter Seidel, and Tobias Ritschel. 2017. Minimal Warping:
Planning Incremental Novel-view Synthesis. Comp. Graph. Forum 36, 4 (2017), 1ś14.

Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 2
(1982), 129ś37.

Michael D McCool. 1999. Anisotropic difusion for Monte Carlo noise reduction. ACM
Trans. Graph. 18, 2 (1999), 171ś94.

Morgan McGuire, Padraic Hennessy, Michael Bukowski, and Brian Osman. 2012. A
reconstruction ilter for plausible motion blur. In i3D. 135ś42.

Jacob Munkberg, Karthik Vaidyanathan, Jon Hasselgren, Petrik Clarberg, and Tomas
Akenine-Möller. 2014. Layered reconstruction for defocus and motion blur. Comp.
Graph. Forum 33, 4 (2014), 81ś92.

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, H-P Seidel, and Tobias Ritschel.
2017. Deep Shading: Convolutional Neural Networks for Screen Space Shading.
Comp. Graph. Forum 36, 4 (2017), 65ś78.

Oliver Nalbach, Tobias Ritschel, and Hans-Peter Seidel. 2014. Deep Screen Space. In
I3D. ACM.

Alexandrina Orzan, Adrien Bousseau, Pascal Barla, Holger Winnemöller, Joëlle Thollot,
and David Salesin. 2013. Difusion curves: a vector representation for smooth-shaded
images. Comm. ACM 56, 7 (2013), 101ś8.

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM
Trans. Graph (Proc. SIGGRAPH) 22, 3 (2003), 313ś18.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From
theory to implementation. Morgan Kaufmann.

Michael Potmesil and Indranil Chakravarty. 1981. A lens and aperture camera model
for synthetic image generation. ACM SIGGRAPH Computer Graphics 15, 3 (1981),
297ś305.

Simon Premože, Michael Ashikhmin, Jerry Tessendorf, Ravi Ramamoorthi, and Shree
Nayar. 2004. Practical rendering of multiple scattering efects in participating media.
In Proc. EGWR. 363ś74.

Gilberto Rosado. 2007. Motion blur as a post-processing efect. 575ś81.
Pradeep Sen and Soheil Darabi. 2012. On iltering the noise from the random parameters

in Monte Carlo rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 3 (2012), 18ś1.
Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered depth

images. In Proc. SIGRAPH. 231ś42.
Patrice Simard, Léon Bottou, Patrick Hafner, and Yann LeCun. 1999. Boxlets: a fast

convolution algorithm for signal processing and neural networks. In NIPS. 571ś7.
Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and François Sillion. 2009.

Fourier depth of ield. ACM Trans. Graph. 28, 2 (2009), 18.
Xin Sun, Guofu Xie, Yue Dong, Stephen Lin, Weiwei Xu, Wencheng Wang, Xin Tong,

and Baining Guo. 2012. Difusion curve textures for resolution independent texture
mapping. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012), 74ś1.

Karthik Vaidyanathan, JacobMunkberg, Petrik Clarberg, andMarco Salvi. 2015. Layered
light ield reconstruction for defocus blur. ACM Trans. Graph. 34, 2 (2015).

Xuan Yu, Rui Wang, and Jingyi Yu. 2010. Real-time Depth of Field Rendering via
Dynamic Light Field Generation and Filtering. Comp. Graph. Forum 29, 7 (2010),
2099ś2107.

Received January 2018; revised April 2018; inal version May 2018; accepted

May 2018

ACM Trans. Graph., Vol. 37, No. 4, Article 55. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Previous Work
	3 Overview
	4 Background
	5 Pre-calculation: PSF Sampling
	5.1 PSF Model
	5.2 Sample placement
	5.3 Sample generation
	5.4 Pre-filtering
	5.5 Sparsification

	6 Runtime: PSF Splatting
	6.1 Sample storage
	6.2 Sample splatting
	6.3 Integration
	6.4 Fast Track

	7 Results
	7.1 Qualitative
	7.2 Quantitative
	7.3 Analysis
	7.4 Limitations

	8 Conclusion
	References

